Integral of $$$- \cos{\left(t \right)}$$$

The calculator will find the integral/antiderivative of $$$- \cos{\left(t \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- \cos{\left(t \right)}\right)\, dt$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=-1$$$ and $$$f{\left(t \right)} = \cos{\left(t \right)}$$$:

$${\color{red}{\int{\left(- \cos{\left(t \right)}\right)d t}}} = {\color{red}{\left(- \int{\cos{\left(t \right)} d t}\right)}}$$

The integral of the cosine is $$$\int{\cos{\left(t \right)} d t} = \sin{\left(t \right)}$$$:

$$- {\color{red}{\int{\cos{\left(t \right)} d t}}} = - {\color{red}{\sin{\left(t \right)}}}$$

Therefore,

$$\int{\left(- \cos{\left(t \right)}\right)d t} = - \sin{\left(t \right)}$$

Add the constant of integration:

$$\int{\left(- \cos{\left(t \right)}\right)d t} = - \sin{\left(t \right)}+C$$

Answer

$$$\int \left(- \cos{\left(t \right)}\right)\, dt = - \sin{\left(t \right)} + C$$$A


Please try a new game Rotatly