Integral of $$$- \operatorname{atan}{\left(5 x \right)}$$$

The calculator will find the integral/antiderivative of $$$- \operatorname{atan}{\left(5 x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- \operatorname{atan}{\left(5 x \right)}\right)\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \operatorname{atan}{\left(5 x \right)}$$$:

$${\color{red}{\int{\left(- \operatorname{atan}{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(- \int{\operatorname{atan}{\left(5 x \right)} d x}\right)}}$$

Let $$$u=5 x$$$.

Then $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{5}$$$.

So,

$$- {\color{red}{\int{\operatorname{atan}{\left(5 x \right)} d x}}} = - {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{5} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{5}$$$ and $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$:

$$- {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{5} d u}}} = - {\color{red}{\left(\frac{\int{\operatorname{atan}{\left(u \right)} d u}}{5}\right)}}$$

For the integral $$$\int{\operatorname{atan}{\left(u \right)} d u}$$$, use integration by parts $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.

Let $$$\operatorname{g}=\operatorname{atan}{\left(u \right)}$$$ and $$$\operatorname{dv}=du$$$.

Then $$$\operatorname{dg}=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du=\frac{du}{u^{2} + 1}$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d u}=u$$$ (steps can be seen »).

The integral can be rewritten as

$$- \frac{{\color{red}{\int{\operatorname{atan}{\left(u \right)} d u}}}}{5}=- \frac{{\color{red}{\left(\operatorname{atan}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u^{2} + 1} d u}\right)}}}{5}=- \frac{{\color{red}{\left(u \operatorname{atan}{\left(u \right)} - \int{\frac{u}{u^{2} + 1} d u}\right)}}}{5}$$

Let $$$v=u^{2} + 1$$$.

Then $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (steps can be seen »), and we have that $$$u du = \frac{dv}{2}$$$.

Thus,

$$- \frac{u \operatorname{atan}{\left(u \right)}}{5} + \frac{{\color{red}{\int{\frac{u}{u^{2} + 1} d u}}}}{5} = - \frac{u \operatorname{atan}{\left(u \right)}}{5} + \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{5}$$

Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(v \right)} = \frac{1}{v}$$$:

$$- \frac{u \operatorname{atan}{\left(u \right)}}{5} + \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{5} = - \frac{u \operatorname{atan}{\left(u \right)}}{5} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{5}$$

The integral of $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \frac{u \operatorname{atan}{\left(u \right)}}{5} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{10} = - \frac{u \operatorname{atan}{\left(u \right)}}{5} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{10}$$

Recall that $$$v=u^{2} + 1$$$:

$$- \frac{u \operatorname{atan}{\left(u \right)}}{5} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{10} = - \frac{u \operatorname{atan}{\left(u \right)}}{5} + \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{10}$$

Recall that $$$u=5 x$$$:

$$\frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{10} - \frac{{\color{red}{u}} \operatorname{atan}{\left({\color{red}{u}} \right)}}{5} = \frac{\ln{\left(1 + {\color{red}{\left(5 x\right)}}^{2} \right)}}{10} - \frac{{\color{red}{\left(5 x\right)}} \operatorname{atan}{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$

Therefore,

$$\int{\left(- \operatorname{atan}{\left(5 x \right)}\right)d x} = - x \operatorname{atan}{\left(5 x \right)} + \frac{\ln{\left(25 x^{2} + 1 \right)}}{10}$$

Add the constant of integration:

$$\int{\left(- \operatorname{atan}{\left(5 x \right)}\right)d x} = - x \operatorname{atan}{\left(5 x \right)} + \frac{\ln{\left(25 x^{2} + 1 \right)}}{10}+C$$

Answer

$$$\int \left(- \operatorname{atan}{\left(5 x \right)}\right)\, dx = \left(- x \operatorname{atan}{\left(5 x \right)} + \frac{\ln\left(25 x^{2} + 1\right)}{10}\right) + C$$$A


Please try a new game Rotatly