Integral of $$$- \frac{3}{\left(x + 2\right)^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{3}{\left(x + 2\right)^{2}}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-3$$$ and $$$f{\left(x \right)} = \frac{1}{\left(x + 2\right)^{2}}$$$:
$${\color{red}{\int{\left(- \frac{3}{\left(x + 2\right)^{2}}\right)d x}}} = {\color{red}{\left(- 3 \int{\frac{1}{\left(x + 2\right)^{2}} d x}\right)}}$$
Let $$$u=x + 2$$$.
Then $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral can be rewritten as
$$- 3 {\color{red}{\int{\frac{1}{\left(x + 2\right)^{2}} d x}}} = - 3 {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$$- 3 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- 3 {\color{red}{\int{u^{-2} d u}}}=- 3 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- 3 {\color{red}{\left(- u^{-1}\right)}}=- 3 {\color{red}{\left(- \frac{1}{u}\right)}}$$
Recall that $$$u=x + 2$$$:
$$3 {\color{red}{u}}^{-1} = 3 {\color{red}{\left(x + 2\right)}}^{-1}$$
Therefore,
$$\int{\left(- \frac{3}{\left(x + 2\right)^{2}}\right)d x} = \frac{3}{x + 2}$$
Add the constant of integration:
$$\int{\left(- \frac{3}{\left(x + 2\right)^{2}}\right)d x} = \frac{3}{x + 2}+C$$
Answer
$$$\int \left(- \frac{3}{\left(x + 2\right)^{2}}\right)\, dx = \frac{3}{x + 2} + C$$$A