Integral of $$$- 2 y$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- 2 y\right)\, dy$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ with $$$c=-2$$$ and $$$f{\left(y \right)} = y$$$:
$${\color{red}{\int{\left(- 2 y\right)d y}}} = {\color{red}{\left(- 2 \int{y d y}\right)}}$$
Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$- 2 {\color{red}{\int{y d y}}}=- 2 {\color{red}{\frac{y^{1 + 1}}{1 + 1}}}=- 2 {\color{red}{\left(\frac{y^{2}}{2}\right)}}$$
Therefore,
$$\int{\left(- 2 y\right)d y} = - y^{2}$$
Add the constant of integration:
$$\int{\left(- 2 y\right)d y} = - y^{2}+C$$
Answer
$$$\int \left(- 2 y\right)\, dy = - y^{2} + C$$$A