Integral of $$$- \frac{9}{10}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{9}{10}\right)\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=- \frac{9}{10}$$$:
$${\color{red}{\int{\left(- \frac{9}{10}\right)d x}}} = {\color{red}{\left(- \frac{9 x}{10}\right)}}$$
Therefore,
$$\int{\left(- \frac{9}{10}\right)d x} = - \frac{9 x}{10}$$
Add the constant of integration:
$$\int{\left(- \frac{9}{10}\right)d x} = - \frac{9 x}{10}+C$$
Answer
$$$\int \left(- \frac{9}{10}\right)\, dx = - \frac{9 x}{10} + C$$$A
Please try a new game Rotatly