Integral of $$$\sqrt{\frac{x}{4 - x^{3}}}$$$

The calculator will find the integral/antiderivative of $$$\sqrt{\frac{x}{4 - x^{3}}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sqrt{\frac{x}{4 - x^{3}}}\, dx$$$.

Solution

The input is rewritten: $$$\int{\sqrt{\frac{x}{4 - x^{3}}} d x}=\int{\frac{\sqrt{x}}{\sqrt{4 - x^{3}}} d x}$$$.

Let $$$u=x^{\frac{3}{2}}$$$.

Then $$$du=\left(x^{\frac{3}{2}}\right)^{\prime }dx = \frac{3 \sqrt{x}}{2} dx$$$ (steps can be seen »), and we have that $$$\sqrt{x} dx = \frac{2 du}{3}$$$.

Thus,

$${\color{red}{\int{\frac{\sqrt{x}}{\sqrt{4 - x^{3}}} d x}}} = {\color{red}{\int{\frac{2}{3 \sqrt{4 - u^{2}}} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{2}{3}$$$ and $$$f{\left(u \right)} = \frac{1}{\sqrt{4 - u^{2}}}$$$:

$${\color{red}{\int{\frac{2}{3 \sqrt{4 - u^{2}}} d u}}} = {\color{red}{\left(\frac{2 \int{\frac{1}{\sqrt{4 - u^{2}}} d u}}{3}\right)}}$$

Let $$$u=2 \sin{\left(v \right)}$$$.

Then $$$du=\left(2 \sin{\left(v \right)}\right)^{\prime }dv = 2 \cos{\left(v \right)} dv$$$ (steps can be seen »).

Also, it follows that $$$v=\operatorname{asin}{\left(\frac{u}{2} \right)}$$$.

So,

$$$\frac{1}{\sqrt{4 - u ^{2}}} = \frac{1}{\sqrt{4 - 4 \sin^{2}{\left( v \right)}}}$$$

Use the identity $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$:

$$$\frac{1}{\sqrt{4 - 4 \sin^{2}{\left( v \right)}}}=\frac{1}{2 \sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{1}{2 \sqrt{\cos^{2}{\left( v \right)}}}$$$

Assuming that $$$\cos{\left( v \right)} \ge 0$$$, we obtain the following:

$$$\frac{1}{2 \sqrt{\cos^{2}{\left( v \right)}}} = \frac{1}{2 \cos{\left( v \right)}}$$$

Integral can be rewritten as

$$\frac{2 {\color{red}{\int{\frac{1}{\sqrt{4 - u^{2}}} d u}}}}{3} = \frac{2 {\color{red}{\int{1 d v}}}}{3}$$

Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:

$$\frac{2 {\color{red}{\int{1 d v}}}}{3} = \frac{2 {\color{red}{v}}}{3}$$

Recall that $$$v=\operatorname{asin}{\left(\frac{u}{2} \right)}$$$:

$$\frac{2 {\color{red}{v}}}{3} = \frac{2 {\color{red}{\operatorname{asin}{\left(\frac{u}{2} \right)}}}}{3}$$

Recall that $$$u=x^{\frac{3}{2}}$$$:

$$\frac{2 \operatorname{asin}{\left(\frac{{\color{red}{u}}}{2} \right)}}{3} = \frac{2 \operatorname{asin}{\left(\frac{{\color{red}{x^{\frac{3}{2}}}}}{2} \right)}}{3}$$

Therefore,

$$\int{\frac{\sqrt{x}}{\sqrt{4 - x^{3}}} d x} = \frac{2 \operatorname{asin}{\left(\frac{x^{\frac{3}{2}}}{2} \right)}}{3}$$

Add the constant of integration:

$$\int{\frac{\sqrt{x}}{\sqrt{4 - x^{3}}} d x} = \frac{2 \operatorname{asin}{\left(\frac{x^{\frac{3}{2}}}{2} \right)}}{3}+C$$

Answer

$$$\int \sqrt{\frac{x}{4 - x^{3}}}\, dx = \frac{2 \operatorname{asin}{\left(\frac{x^{\frac{3}{2}}}{2} \right)}}{3} + C$$$A


Please try a new game Rotatly