Integral of $$$8498000 - 212450 t$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(8498000 - 212450 t\right)\, dt$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(8498000 - 212450 t\right)d t}}} = {\color{red}{\left(\int{8498000 d t} - \int{212450 t d t}\right)}}$$
Apply the constant rule $$$\int c\, dt = c t$$$ with $$$c=8498000$$$:
$$- \int{212450 t d t} + {\color{red}{\int{8498000 d t}}} = - \int{212450 t d t} + {\color{red}{\left(8498000 t\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=212450$$$ and $$$f{\left(t \right)} = t$$$:
$$8498000 t - {\color{red}{\int{212450 t d t}}} = 8498000 t - {\color{red}{\left(212450 \int{t d t}\right)}}$$
Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$8498000 t - 212450 {\color{red}{\int{t d t}}}=8498000 t - 212450 {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=8498000 t - 212450 {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
Therefore,
$$\int{\left(8498000 - 212450 t\right)d t} = - 106225 t^{2} + 8498000 t$$
Simplify:
$$\int{\left(8498000 - 212450 t\right)d t} = 106225 t \left(80 - t\right)$$
Add the constant of integration:
$$\int{\left(8498000 - 212450 t\right)d t} = 106225 t \left(80 - t\right)+C$$
Answer
$$$\int \left(8498000 - 212450 t\right)\, dt = 106225 t \left(80 - t\right) + C$$$A