Integral of $$$\frac{1}{x^{\frac{7}{10}}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{x^{\frac{7}{10}}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{x^{\frac{7}{10}}}\, dx$$$.

Solution

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{7}{10}$$$:

$${\color{red}{\int{\frac{1}{x^{\frac{7}{10}}} d x}}}={\color{red}{\int{x^{- \frac{7}{10}} d x}}}={\color{red}{\frac{x^{- \frac{7}{10} + 1}}{- \frac{7}{10} + 1}}}={\color{red}{\left(\frac{10 x^{\frac{3}{10}}}{3}\right)}}$$

Therefore,

$$\int{\frac{1}{x^{\frac{7}{10}}} d x} = \frac{10 x^{\frac{3}{10}}}{3}$$

Add the constant of integration:

$$\int{\frac{1}{x^{\frac{7}{10}}} d x} = \frac{10 x^{\frac{3}{10}}}{3}+C$$

Answer

$$$\int \frac{1}{x^{\frac{7}{10}}}\, dx = \frac{10 x^{\frac{3}{10}}}{3} + C$$$A


Please try a new game Rotatly