Integral of $$$\frac{1}{x \ln^{3}\left(x\right)}$$$ with respect to $$$t$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt$$$.
Solution
Apply the constant rule $$$\int c\, dt = c t$$$ with $$$c=\frac{1}{x \ln{\left(x \right)}^{3}}$$$:
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t}}} = {\color{red}{\frac{t}{x \ln{\left(x \right)}^{3}}}}$$
Therefore,
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}$$
Add the constant of integration:
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}+C$$
Answer
$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt = \frac{t}{x \ln^{3}\left(x\right)} + C$$$A