Integral of $$$- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}$$$

The calculator will find the integral/antiderivative of $$$- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2 x^{5}} d x} - \int{\frac{1}{2 x - 5} d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \frac{1}{x^{5}}$$$:

$$- \int{\frac{1}{2 x - 5} d x} + {\color{red}{\int{\frac{1}{2 x^{5}} d x}}} = - \int{\frac{1}{2 x - 5} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x^{5}} d x}}{2}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-5$$$:

$$- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\int{\frac{1}{x^{5}} d x}}}}{2}=- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\int{x^{-5} d x}}}}{2}=- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}}}{2}=- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\left(- \frac{x^{-4}}{4}\right)}}}{2}=- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\left(- \frac{1}{4 x^{4}}\right)}}}{2}$$

Let $$$u=2 x - 5$$$.

Then $$$du=\left(2 x - 5\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.

The integral can be rewritten as

$$- {\color{red}{\int{\frac{1}{2 x - 5} d x}}} - \frac{1}{8 x^{4}} = - {\color{red}{\int{\frac{1}{2 u} d u}}} - \frac{1}{8 x^{4}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$- {\color{red}{\int{\frac{1}{2 u} d u}}} - \frac{1}{8 x^{4}} = - {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}} - \frac{1}{8 x^{4}}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} - \frac{1}{8 x^{4}} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2} - \frac{1}{8 x^{4}}$$

Recall that $$$u=2 x - 5$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \frac{1}{8 x^{4}} = - \frac{\ln{\left(\left|{{\color{red}{\left(2 x - 5\right)}}}\right| \right)}}{2} - \frac{1}{8 x^{4}}$$

Therefore,

$$\int{\left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)d x} = - \frac{\ln{\left(\left|{2 x - 5}\right| \right)}}{2} - \frac{1}{8 x^{4}}$$

Add the constant of integration:

$$\int{\left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)d x} = - \frac{\ln{\left(\left|{2 x - 5}\right| \right)}}{2} - \frac{1}{8 x^{4}}+C$$

Answer

$$$\int \left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)\, dx = \left(- \frac{\ln\left(\left|{2 x - 5}\right|\right)}{2} - \frac{1}{8 x^{4}}\right) + C$$$A


Please try a new game Rotatly