Integral of $$$\frac{1}{1 - 2 x}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{1 - 2 x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{1 - 2 x}\, dx$$$.

Solution

Let $$$u=1 - 2 x$$$.

Then $$$du=\left(1 - 2 x\right)^{\prime }dx = - 2 dx$$$ (steps can be seen »), and we have that $$$dx = - \frac{du}{2}$$$.

Therefore,

$${\color{red}{\int{\frac{1}{1 - 2 x} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=- \frac{1}{2}$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recall that $$$u=1 - 2 x$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(1 - 2 x\right)}}}\right| \right)}}{2}$$

Therefore,

$$\int{\frac{1}{1 - 2 x} d x} = - \frac{\ln{\left(\left|{2 x - 1}\right| \right)}}{2}$$

Add the constant of integration:

$$\int{\frac{1}{1 - 2 x} d x} = - \frac{\ln{\left(\left|{2 x - 1}\right| \right)}}{2}+C$$

Answer

$$$\int \frac{1}{1 - 2 x}\, dx = - \frac{\ln\left(\left|{2 x - 1}\right|\right)}{2} + C$$$A


Please try a new game Rotatly