Integral of $$$\frac{1}{- \sqrt{3} x + \sqrt{2} x}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{- \sqrt{3} x + \sqrt{2} x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{- \sqrt{3} x + \sqrt{2} x}\, dx$$$.

Solution

Let $$$u=- \sqrt{3} x + \sqrt{2} x$$$.

Then $$$du=\left(- \sqrt{3} x + \sqrt{2} x\right)^{\prime }dx = \left(- \sqrt{3} + \sqrt{2}\right) dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{- \sqrt{3} + \sqrt{2}}$$$.

The integral can be rewritten as

$${\color{red}{\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x}}} = {\color{red}{\int{\frac{1}{u \left(- \sqrt{3} + \sqrt{2}\right)} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{- \sqrt{3} + \sqrt{2}}$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\frac{1}{u \left(- \sqrt{3} + \sqrt{2}\right)} d u}}} = {\color{red}{\frac{\int{\frac{1}{u} d u}}{- \sqrt{3} + \sqrt{2}}}}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{- \sqrt{3} + \sqrt{2}} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{- \sqrt{3} + \sqrt{2}}$$

Recall that $$$u=- \sqrt{3} x + \sqrt{2} x$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{- \sqrt{3} + \sqrt{2}} = \frac{\ln{\left(\left|{{\color{red}{\left(- \sqrt{3} x + \sqrt{2} x\right)}}}\right| \right)}}{- \sqrt{3} + \sqrt{2}}$$

Therefore,

$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{- \sqrt{3} x + \sqrt{2} x}\right| \right)}}{- \sqrt{3} + \sqrt{2}}$$

Simplify:

$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{x}\right| \right)} + \ln{\left(- \sqrt{2} + \sqrt{3} \right)}}{- \sqrt{3} + \sqrt{2}}$$

Add the constant of integration:

$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{x}\right| \right)} + \ln{\left(- \sqrt{2} + \sqrt{3} \right)}}{- \sqrt{3} + \sqrt{2}}+C$$

Answer

$$$\int \frac{1}{- \sqrt{3} x + \sqrt{2} x}\, dx = \frac{\ln\left(\left|{x}\right|\right) + \ln\left(- \sqrt{2} + \sqrt{3}\right)}{- \sqrt{3} + \sqrt{2}} + C$$$A


Please try a new game Rotatly