Integral of $$$\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}\, dx$$$.

Solution

Multiply the numerator and denominator by $$$\frac{1}{\cos^{6}{\left(x \right)}}$$$ and convert $$$\frac{\cos^{6}{\left(x \right)}}{\sin^{6}{\left(x \right)}}$$$ into $$$\frac{1}{\tan^{6}{\left(x \right)}}$$$:

$${\color{red}{\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{12}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}}$$

Strip out two cosines and rewrite them in terms of the secant using the formula $$$\frac{1}{\cos^{2}{\left(x \right)}}=\sec^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{1}{\cos^{12}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{10}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}}$$

Rewrite the cosine in terms of the tangent using the formula $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$:

$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{10}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{5} \sec^{2}{\left(x \right)}}{\tan^{6}{\left(x \right)}} d x}}}$$

Let $$$u=\tan{\left(x \right)}$$$.

Then $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(x \right)} dx = du$$$.

So,

$${\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{5} \sec^{2}{\left(x \right)}}{\tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(u^{2} + 1\right)^{5}}{u^{6}} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{\left(u^{2} + 1\right)^{5}}{u^{6}} d u}}} = {\color{red}{\int{\left(u^{4} + 5 u^{2} + 10 + \frac{10}{u^{2}} + \frac{5}{u^{4}} + \frac{1}{u^{6}}\right)d u}}}$$

Integrate term by term:

$${\color{red}{\int{\left(u^{4} + 5 u^{2} + 10 + \frac{10}{u^{2}} + \frac{5}{u^{4}} + \frac{1}{u^{6}}\right)d u}}} = {\color{red}{\left(\int{10 d u} + \int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u}\right)}}$$

Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=10$$$:

$$\int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{10 d u}}} = \int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(10 u\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-6$$$:

$$10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{\frac{1}{u^{6}} d u}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{u^{-6} d u}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\frac{u^{-6 + 1}}{-6 + 1}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(- \frac{u^{-5}}{5}\right)}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(- \frac{1}{5 u^{5}}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=4$$$:

$$10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\int{u^{4} d u}}} - \frac{1}{5 u^{5}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}} - \frac{1}{5 u^{5}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}} - \frac{1}{5 u^{5}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=5$$$ and $$$f{\left(u \right)} = \frac{1}{u^{4}}$$$:

$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\int{\frac{5}{u^{4}} d u}}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\left(5 \int{\frac{1}{u^{4}} d u}\right)}} - \frac{1}{5 u^{5}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-4$$$:

$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\int{\frac{1}{u^{4}} d u}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\int{u^{-4} d u}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\frac{u^{-4 + 1}}{-4 + 1}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\left(- \frac{u^{-3}}{3}\right)}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\left(- \frac{1}{3 u^{3}}\right)}} - \frac{1}{5 u^{5}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=5$$$ and $$$f{\left(u \right)} = u^{2}$$$:

$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + {\color{red}{\int{5 u^{2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + {\color{red}{\left(5 \int{u^{2} d u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\int{u^{2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\left(\frac{u^{3}}{3}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=10$$$ and $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:

$$\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + {\color{red}{\int{\frac{10}{u^{2}} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + {\color{red}{\left(10 \int{\frac{1}{u^{2}} d u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$$\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\int{\frac{1}{u^{2}} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\int{u^{-2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\left(- u^{-1}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\left(- \frac{1}{u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$

Recall that $$$u=\tan{\left(x \right)}$$$:

$$- \frac{{\color{red}{u}}^{-5}}{5} - \frac{5 {\color{red}{u}}^{-3}}{3} - 10 {\color{red}{u}}^{-1} + 10 {\color{red}{u}} + \frac{5 {\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = - \frac{{\color{red}{\tan{\left(x \right)}}}^{-5}}{5} - \frac{5 {\color{red}{\tan{\left(x \right)}}}^{-3}}{3} - 10 {\color{red}{\tan{\left(x \right)}}}^{-1} + 10 {\color{red}{\tan{\left(x \right)}}} + \frac{5 {\color{red}{\tan{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$

Therefore,

$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5} + \frac{5 \tan^{3}{\left(x \right)}}{3} + 10 \tan{\left(x \right)} - \frac{10}{\tan{\left(x \right)}} - \frac{5}{3 \tan^{3}{\left(x \right)}} - \frac{1}{5 \tan^{5}{\left(x \right)}}$$

Simplify:

$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}}$$

Add the constant of integration:

$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}}+C$$

Answer

$$$\int \frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}\, dx = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}} + C$$$A


Please try a new game Rotatly