Integral of $$$x^{62}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{62}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=62$$$:
$${\color{red}{\int{x^{62} d x}}}={\color{red}{\frac{x^{1 + 62}}{1 + 62}}}={\color{red}{\left(\frac{x^{63}}{63}\right)}}$$
Therefore,
$$\int{x^{62} d x} = \frac{x^{63}}{63}$$
Add the constant of integration:
$$\int{x^{62} d x} = \frac{x^{63}}{63}+C$$
Answer
$$$\int x^{62}\, dx = \frac{x^{63}}{63} + C$$$A
Please try a new game Rotatly