Integral of $$$\frac{\sqrt{2}}{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sqrt{2}}{2}\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\frac{\sqrt{2}}{2}$$$:
$${\color{red}{\int{\frac{\sqrt{2}}{2} d x}}} = {\color{red}{\left(\frac{\sqrt{2} x}{2}\right)}}$$
Therefore,
$$\int{\frac{\sqrt{2}}{2} d x} = \frac{\sqrt{2} x}{2}$$
Add the constant of integration:
$$\int{\frac{\sqrt{2}}{2} d x} = \frac{\sqrt{2} x}{2}+C$$
Answer
$$$\int \frac{\sqrt{2}}{2}\, dx = \frac{\sqrt{2} x}{2} + C$$$A
Please try a new game Rotatly