Integral of $$$- \frac{2}{3 x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{2}{3 x}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=- \frac{2}{3}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}{\int{\left(- \frac{2}{3 x}\right)d x}}} = {\color{red}{\left(- \frac{2 \int{\frac{1}{x} d x}}{3}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \frac{2 {\color{red}{\int{\frac{1}{x} d x}}}}{3} = - \frac{2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{3}$$
Therefore,
$$\int{\left(- \frac{2}{3 x}\right)d x} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3}$$
Add the constant of integration:
$$\int{\left(- \frac{2}{3 x}\right)d x} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3}+C$$
Answer
$$$\int \left(- \frac{2}{3 x}\right)\, dx = - \frac{2 \ln\left(\left|{x}\right|\right)}{3} + C$$$A