Integral of $$$ln_{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int ln_{2}\, dln_{2}$$$.
Solution
Apply the power rule $$$\int ln_{2}^{n}\, dln_{2} = \frac{ln_{2}^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$${\color{red}{\int{ln_{2} d ln_{2}}}}={\color{red}{\frac{ln_{2}^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{ln_{2}^{2}}{2}\right)}}$$
Therefore,
$$\int{ln_{2} d ln_{2}} = \frac{ln_{2}^{2}}{2}$$
Add the constant of integration:
$$\int{ln_{2} d ln_{2}} = \frac{ln_{2}^{2}}{2}+C$$
Answer
$$$\int ln_{2}\, dln_{2} = \frac{ln_{2}^{2}}{2} + C$$$A
Please try a new game Rotatly