Integral of $$$\frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{2}}{4}$$$ and $$$f{\left(x \right)} = \frac{\cos{\left(3 x \right)}}{\sin{\left(3 x \right)}}$$$:
$${\color{red}{\int{\frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\frac{\cos{\left(3 x \right)}}{\sin{\left(3 x \right)}} d x}}{4}\right)}}$$
Let $$$u=\sin{\left(3 x \right)}$$$.
Then $$$du=\left(\sin{\left(3 x \right)}\right)^{\prime }dx = 3 \cos{\left(3 x \right)} dx$$$ (steps can be seen »), and we have that $$$\cos{\left(3 x \right)} dx = \frac{du}{3}$$$.
Thus,
$$\frac{\sqrt{2} {\color{red}{\int{\frac{\cos{\left(3 x \right)}}{\sin{\left(3 x \right)}} d x}}}}{4} = \frac{\sqrt{2} {\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = \frac{\sqrt{2} {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{12} = \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$
Recall that $$$u=\sin{\left(3 x \right)}$$$:
$$\frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} = \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\sin{\left(3 x \right)}}}}\right| \right)}}{12}$$
Therefore,
$$\int{\frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}} d x} = \frac{\sqrt{2} \ln{\left(\left|{\sin{\left(3 x \right)}}\right| \right)}}{12}$$
Add the constant of integration:
$$\int{\frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}} d x} = \frac{\sqrt{2} \ln{\left(\left|{\sin{\left(3 x \right)}}\right| \right)}}{12}+C$$
Answer
$$$\int \frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}}\, dx = \frac{\sqrt{2} \ln\left(\left|{\sin{\left(3 x \right)}}\right|\right)}{12} + C$$$A