Integral of $$$\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}\, dt$$$.
Solution
Rewrite $$$\sin\left(2 t \right)\cos\left(4 t \right)$$$ using the formula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ with $$$\alpha=2 t$$$ and $$$\beta=4 t$$$:
$${\color{red}{\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t}}} = {\color{red}{\int{\frac{\pi \left(- \frac{\sin{\left(2 t \right)}}{2} + \frac{\sin{\left(6 t \right)}}{2}\right) \sin{\left(4 t \right)}}{20} d t}}}$$
Expand the expression:
$${\color{red}{\int{\frac{\pi \left(- \frac{\sin{\left(2 t \right)}}{2} + \frac{\sin{\left(6 t \right)}}{2}\right) \sin{\left(4 t \right)}}{20} d t}}} = {\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{40} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{40}\right)d t}}}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(t \right)} = - \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}$$$:
$${\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{40} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{40}\right)d t}}} = {\color{red}{\left(\frac{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}\right)d t}}{2}\right)}}$$
Integrate term by term:
$$\frac{{\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}\right)d t}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} d t} + \int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}\right)}}}{2}$$
Rewrite $$$\sin\left(2 t \right)\sin\left(4 t \right)$$$ using the formula $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ with $$$\alpha=2 t$$$ and $$$\beta=4 t$$$:
$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)}{20} d t}}}}{2}$$
Expand the expression:
$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)}{20} d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(6 t \right)}}{40}\right)d t}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(t \right)} = \frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}$$$:
$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(6 t \right)}}{40}\right)d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}\right)d t}}{2}\right)}}}{2}$$
Integrate term by term:
$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}\right)d t}}}}{4} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t} - \int{\frac{\pi \cos{\left(6 t \right)}}{20} d t}\right)}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{\pi}{20}$$$ and $$$f{\left(t \right)} = \cos{\left(6 t \right)}$$$:
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{{\color{red}{\int{\frac{\pi \cos{\left(6 t \right)}}{20} d t}}}}{4} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(6 t \right)} d t}}{20}\right)}}}{4}$$
Let $$$u=6 t$$$.
Then $$$du=\left(6 t\right)^{\prime }dt = 6 dt$$$ (steps can be seen »), and we have that $$$dt = \frac{du}{6}$$$.
Therefore,
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\cos{\left(6 t \right)} d t}}}}{80} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{80}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{6}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{80} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{80}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{480} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{480}$$
Recall that $$$u=6 t$$$:
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi \sin{\left({\color{red}{u}} \right)}}{480} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi \sin{\left({\color{red}{\left(6 t\right)}} \right)}}{480}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{\pi}{20}$$$ and $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$:
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}}}{4} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(2 t \right)} d t}}{20}\right)}}}{4}$$
Let $$$u=2 t$$$.
Then $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (steps can be seen »), and we have that $$$dt = \frac{du}{2}$$$.
Thus,
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{80} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{80}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{80} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{80}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{160} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{160}$$
Recall that $$$u=2 t$$$:
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi \sin{\left({\color{red}{u}} \right)}}{160} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi \sin{\left({\color{red}{\left(2 t\right)}} \right)}}{160}$$
Rewrite $$$\sin\left(4 t \right)\sin\left(6 t \right)$$$ using the formula $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ with $$$\alpha=4 t$$$ and $$$\beta=6 t$$$:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(10 t \right)}}{2}\right)}{20} d t}}}}{2}$$
Expand the expression:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(10 t \right)}}{2}\right)}{20} d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(10 t \right)}}{40}\right)d t}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(t \right)} = \frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}$$$:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(10 t \right)}}{40}\right)d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\left(\frac{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}\right)d t}}{2}\right)}}}{2}$$
Integrate term by term:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}\right)d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\left(\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t} - \int{\frac{\pi \cos{\left(10 t \right)}}{20} d t}\right)}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{\pi}{20}$$$ and $$$f{\left(t \right)} = \cos{\left(10 t \right)}$$$:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{{\color{red}{\int{\frac{\pi \cos{\left(10 t \right)}}{20} d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(10 t \right)} d t}}{20}\right)}}}{4}$$
Let $$$u=10 t$$$.
Then $$$du=\left(10 t\right)^{\prime }dt = 10 dt$$$ (steps can be seen »), and we have that $$$dt = \frac{du}{10}$$$.
So,
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\cos{\left(10 t \right)} d t}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{10} d u}}}}{80}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{10}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{10} d u}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{10}\right)}}}{80}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{800} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{800}$$
Recall that $$$u=10 t$$$:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi \sin{\left({\color{red}{u}} \right)}}{800} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi \sin{\left({\color{red}{\left(10 t\right)}} \right)}}{800}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{\pi}{20}$$$ and $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{{\color{red}{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(2 t \right)} d t}}{20}\right)}}}{4}$$
The integral $$$\int{\cos{\left(2 t \right)} d t}$$$ was already calculated:
$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$
Therefore,
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{\pi {\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{\pi {\color{red}{\left(\frac{\sin{\left(2 t \right)}}{2}\right)}}}{80}$$
Therefore,
$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800}$$
Simplify:
$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400}$$
Add the constant of integration:
$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400}+C$$
Answer
$$$\int \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}\, dt = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400} + C$$$A