Integral of $$$\frac{e^{4 x}}{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{4 x}}{2}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = e^{4 x}$$$:
$${\color{red}{\int{\frac{e^{4 x}}{2} d x}}} = {\color{red}{\left(\frac{\int{e^{4 x} d x}}{2}\right)}}$$
Let $$$u=4 x$$$.
Then $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{4}$$$.
Therefore,
$$\frac{{\color{red}{\int{e^{4 x} d x}}}}{2} = \frac{{\color{red}{\int{\frac{e^{u}}{4} d u}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{{\color{red}{\int{\frac{e^{u}}{4} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{4}\right)}}}{2}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{8} = \frac{{\color{red}{e^{u}}}}{8}$$
Recall that $$$u=4 x$$$:
$$\frac{e^{{\color{red}{u}}}}{8} = \frac{e^{{\color{red}{\left(4 x\right)}}}}{8}$$
Therefore,
$$\int{\frac{e^{4 x}}{2} d x} = \frac{e^{4 x}}{8}$$
Add the constant of integration:
$$\int{\frac{e^{4 x}}{2} d x} = \frac{e^{4 x}}{8}+C$$
Answer
$$$\int \frac{e^{4 x}}{2}\, dx = \frac{e^{4 x}}{8} + C$$$A