Integral of $$$\frac{x^{2} - x}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{x^{2} - x}{x}\, dx$$$.
Solution
Expand the expression:
$${\color{red}{\int{\frac{x^{2} - x}{x} d x}}} = {\color{red}{\int{\left(x - 1\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(x - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{x d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{x d x} - {\color{red}{\int{1 d x}}} = \int{x d x} - {\color{red}{x}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$- x + {\color{red}{\int{x d x}}}=- x + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- x + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Therefore,
$$\int{\frac{x^{2} - x}{x} d x} = \frac{x^{2}}{2} - x$$
Simplify:
$$\int{\frac{x^{2} - x}{x} d x} = \frac{x \left(x - 2\right)}{2}$$
Add the constant of integration:
$$\int{\frac{x^{2} - x}{x} d x} = \frac{x \left(x - 2\right)}{2}+C$$
Answer
$$$\int \frac{x^{2} - x}{x}\, dx = \frac{x \left(x - 2\right)}{2} + C$$$A