Integral of $$$\frac{x^{2} - 3}{x^{3} - 72 x}$$$

The calculator will find the integral/antiderivative of $$$\frac{x^{2} - 3}{x^{3} - 72 x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{x^{2} - 3}{x^{3} - 72 x}\, dx$$$.

Solution

Perform partial fraction decomposition (steps can be seen »):

$${\color{red}{\int{\frac{x^{2} - 3}{x^{3} - 72 x} d x}}} = {\color{red}{\int{\left(\frac{23}{48 \left(x + 6 \sqrt{2}\right)} + \frac{23}{48 \left(x - 6 \sqrt{2}\right)} + \frac{1}{24 x}\right)d x}}}$$

Integrate term by term:

$${\color{red}{\int{\left(\frac{23}{48 \left(x + 6 \sqrt{2}\right)} + \frac{23}{48 \left(x - 6 \sqrt{2}\right)} + \frac{1}{24 x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{24 x} d x} + \int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{24}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$\int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + {\color{red}{\int{\frac{1}{24 x} d x}}} = \int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{24}\right)}}$$

The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{24} = \int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{24}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{23}{48}$$$ and $$$f{\left(x \right)} = \frac{1}{x - 6 \sqrt{2}}$$$:

$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + {\color{red}{\int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x}}} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + {\color{red}{\left(\frac{23 \int{\frac{1}{x - 6 \sqrt{2}} d x}}{48}\right)}}$$

Let $$$u=x - 6 \sqrt{2}$$$.

Then $$$du=\left(x - 6 \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

The integral can be rewritten as

$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{23 {\color{red}{\int{\frac{1}{x - 6 \sqrt{2}} d x}}}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{23 {\color{red}{\int{\frac{1}{u} d u}}}}{48}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{23 {\color{red}{\int{\frac{1}{u} d u}}}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{23 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{48}$$

Recall that $$$u=x - 6 \sqrt{2}$$$:

$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{48} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{{\color{red}{\left(x - 6 \sqrt{2}\right)}}}\right| \right)}}{48} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{23}{48}$$$ and $$$f{\left(x \right)} = \frac{1}{x + 6 \sqrt{2}}$$$:

$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + {\color{red}{\int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x}}} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + {\color{red}{\left(\frac{23 \int{\frac{1}{x + 6 \sqrt{2}} d x}}{48}\right)}}$$

Let $$$u=x + 6 \sqrt{2}$$$.

Then $$$du=\left(x + 6 \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

Thus,

$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 {\color{red}{\int{\frac{1}{x + 6 \sqrt{2}} d x}}}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 {\color{red}{\int{\frac{1}{u} d u}}}}{48}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 {\color{red}{\int{\frac{1}{u} d u}}}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{48}$$

Recall that $$$u=x + 6 \sqrt{2}$$$:

$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 \ln{\left(\left|{{\color{red}{\left(x + 6 \sqrt{2}\right)}}}\right| \right)}}{48}$$

Therefore,

$$\int{\frac{x^{2} - 3}{x^{3} - 72 x} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 \ln{\left(\left|{x + 6 \sqrt{2}}\right| \right)}}{48}$$

Simplify:

$$\int{\frac{x^{2} - 3}{x^{3} - 72 x} d x} = \frac{2 \ln{\left(\left|{x}\right| \right)} + 23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)} + 23 \ln{\left(\left|{x + 6 \sqrt{2}}\right| \right)}}{48}$$

Add the constant of integration:

$$\int{\frac{x^{2} - 3}{x^{3} - 72 x} d x} = \frac{2 \ln{\left(\left|{x}\right| \right)} + 23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)} + 23 \ln{\left(\left|{x + 6 \sqrt{2}}\right| \right)}}{48}+C$$

Answer

$$$\int \frac{x^{2} - 3}{x^{3} - 72 x}\, dx = \frac{2 \ln\left(\left|{x}\right|\right) + 23 \ln\left(\left|{x - 6 \sqrt{2}}\right|\right) + 23 \ln\left(\left|{x + 6 \sqrt{2}}\right|\right)}{48} + C$$$A


Please try a new game Rotatly