Integral of $$$\left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x}\, dx$$$.
Solution
The input is rewritten: $$$\int{\left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x} d x}=\int{1 d x}$$$.
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$${\color{red}{\int{1 d x}}} = {\color{red}{x}}$$
Therefore,
$$\int{1 d x} = x$$
Add the constant of integration:
$$\int{1 d x} = x+C$$
Answer
$$$\int \left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x}\, dx = x + C$$$A
Please try a new game Rotatly