Integral of $$$\left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x}$$$

The calculator will find the integral/antiderivative of $$$\left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x}\, dx$$$.

Solution

The input is rewritten: $$$\int{\left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x} d x}=\int{1 d x}$$$.

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$${\color{red}{\int{1 d x}}} = {\color{red}{x}}$$

Therefore,

$$\int{1 d x} = x$$

Add the constant of integration:

$$\int{1 d x} = x+C$$

Answer

$$$\int \left(\frac{x}{2}\right)^{x} \left(\frac{2}{x}\right)^{x}\, dx = x + C$$$A


Please try a new game Rotatly