Integral of $$$\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}\, dx$$$.
Solution
Simplify the integrand:
$${\color{red}{\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x}}} = {\color{red}{\int{1 d x}}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$${\color{red}{\int{1 d x}}} = {\color{red}{x}}$$
Therefore,
$$\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x} = x$$
Add the constant of integration:
$$\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x} = x+C$$
Answer
$$$\int \frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}\, dx = x + C$$$A