Integral of $$$\frac{\ln^{2}\left(x^{2}\right)}{x}$$$

The calculator will find the integral/antiderivative of $$$\frac{\ln^{2}\left(x^{2}\right)}{x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\ln^{2}\left(x^{2}\right)}{x}\, dx$$$.

Solution

The input is rewritten: $$$\int{\frac{\ln{\left(x^{2} \right)}^{2}}{x} d x}=\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x}$$$.

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}^{2}}{x}$$$:

$${\color{red}{\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x}}} = {\color{red}{\left(4 \int{\frac{\ln{\left(x \right)}^{2}}{x} d x}\right)}}$$

Let $$$u=\ln{\left(x \right)}$$$.

Then $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (steps can be seen »), and we have that $$$\frac{dx}{x} = du$$$.

Thus,

$$4 {\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d x}}} = 4 {\color{red}{\int{u^{2} d u}}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$4 {\color{red}{\int{u^{2} d u}}}=4 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=4 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Recall that $$$u=\ln{\left(x \right)}$$$:

$$\frac{4 {\color{red}{u}}^{3}}{3} = \frac{4 {\color{red}{\ln{\left(x \right)}}}^{3}}{3}$$

Therefore,

$$\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x} = \frac{4 \ln{\left(x \right)}^{3}}{3}$$

Add the constant of integration:

$$\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x} = \frac{4 \ln{\left(x \right)}^{3}}{3}+C$$

Answer

$$$\int \frac{\ln^{2}\left(x^{2}\right)}{x}\, dx = \frac{4 \ln^{3}\left(x\right)}{3} + C$$$A


Please try a new game Rotatly