Integral of $$$e^{- 6 w} \sin{\left(2 w \right)}$$$

The calculator will find the integral/antiderivative of $$$e^{- 6 w} \sin{\left(2 w \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int e^{- 6 w} \sin{\left(2 w \right)}\, dw$$$.

Solution

For the integral $$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=\sin{\left(2 w \right)}$$$ and $$$\operatorname{dv}=e^{- 6 w} dw$$$.

Then $$$\operatorname{du}=\left(\sin{\left(2 w \right)}\right)^{\prime }dw=2 \cos{\left(2 w \right)} dw$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{- 6 w} d w}=- \frac{e^{- 6 w}}{6}$$$ (steps can be seen »).

So,

$${\color{red}{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}}={\color{red}{\left(\sin{\left(2 w \right)} \cdot \left(- \frac{e^{- 6 w}}{6}\right)-\int{\left(- \frac{e^{- 6 w}}{6}\right) \cdot 2 \cos{\left(2 w \right)} d w}\right)}}={\color{red}{\left(- \int{\left(- \frac{e^{- 6 w} \cos{\left(2 w \right)}}{3}\right)d w} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ with $$$c=- \frac{1}{3}$$$ and $$$f{\left(w \right)} = e^{- 6 w} \cos{\left(2 w \right)}$$$:

$$- {\color{red}{\int{\left(- \frac{e^{- 6 w} \cos{\left(2 w \right)}}{3}\right)d w}}} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} = - {\color{red}{\left(- \frac{\int{e^{- 6 w} \cos{\left(2 w \right)} d w}}{3}\right)}} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}$$

For the integral $$$\int{e^{- 6 w} \cos{\left(2 w \right)} d w}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=\cos{\left(2 w \right)}$$$ and $$$\operatorname{dv}=e^{- 6 w} dw$$$.

Then $$$\operatorname{du}=\left(\cos{\left(2 w \right)}\right)^{\prime }dw=- 2 \sin{\left(2 w \right)} dw$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{- 6 w} d w}=- \frac{e^{- 6 w}}{6}$$$ (steps can be seen »).

Therefore,

$$\frac{{\color{red}{\int{e^{- 6 w} \cos{\left(2 w \right)} d w}}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}=\frac{{\color{red}{\left(\cos{\left(2 w \right)} \cdot \left(- \frac{e^{- 6 w}}{6}\right)-\int{\left(- \frac{e^{- 6 w}}{6}\right) \cdot \left(- 2 \sin{\left(2 w \right)}\right) d w}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}=\frac{{\color{red}{\left(- \int{\frac{e^{- 6 w} \sin{\left(2 w \right)}}{3} d w} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{6}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}$$

Apply the constant multiple rule $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(w \right)} = e^{- 6 w} \sin{\left(2 w \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{e^{- 6 w} \sin{\left(2 w \right)}}{3} d w}}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18} = - \frac{{\color{red}{\left(\frac{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}{3}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18}$$

We've arrived to an integral that we already saw.

Thus, we've obtained the following simple equation with respect to the integral:

$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = - \frac{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}{9} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18}$$

Solving it, we get that

$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}$$

Therefore,

$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}$$

Add the constant of integration:

$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}+C$$

Answer

$$$\int e^{- 6 w} \sin{\left(2 w \right)}\, dw = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20} + C$$$A


Please try a new game Rotatly