Integral of $$$\cot^{2}{\left(2 x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cot^{2}{\left(2 x \right)}\, dx$$$.
Solution
Let $$$u=2 x$$$.
Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.
Therefore,
$${\color{red}{\int{\cot^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\cot^{2}{\left(u \right)}}{2} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cot^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cot^{2}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cot^{2}{\left(u \right)} d u}}{2}\right)}}$$
Let $$$v=\cot{\left(u \right)}$$$.
Then $$$dv=\left(\cot{\left(u \right)}\right)^{\prime }du = - \csc^{2}{\left(u \right)} du$$$ (steps can be seen »), and we have that $$$\csc^{2}{\left(u \right)} du = - dv$$$.
Thus,
$$\frac{{\color{red}{\int{\cot^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(- \frac{v^{2}}{v^{2} + 1}\right)d v}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=-1$$$ and $$$f{\left(v \right)} = \frac{v^{2}}{v^{2} + 1}$$$:
$$\frac{{\color{red}{\int{\left(- \frac{v^{2}}{v^{2} + 1}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{v^{2}}{v^{2} + 1} d v}\right)}}}{2}$$
Rewrite and split the fraction:
$$- \frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{2} = - \frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2}$$
Integrate term by term:
$$- \frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2} = - \frac{{\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}}{2}$$
Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:
$$\frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{\int{1 d v}}}}{2} = \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{v}}}{2}$$
The integral of $$$\frac{1}{v^{2} + 1}$$$ is $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$- \frac{v}{2} + \frac{{\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{2} = - \frac{v}{2} + \frac{{\color{red}{\operatorname{atan}{\left(v \right)}}}}{2}$$
Recall that $$$v=\cot{\left(u \right)}$$$:
$$\frac{\operatorname{atan}{\left({\color{red}{v}} \right)}}{2} - \frac{{\color{red}{v}}}{2} = \frac{\operatorname{atan}{\left({\color{red}{\cot{\left(u \right)}}} \right)}}{2} - \frac{{\color{red}{\cot{\left(u \right)}}}}{2}$$
Recall that $$$u=2 x$$$:
$$- \frac{\cot{\left({\color{red}{u}} \right)}}{2} + \frac{\operatorname{atan}{\left(\cot{\left({\color{red}{u}} \right)} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(2 x\right)}} \right)}}{2} + \frac{\operatorname{atan}{\left(\cot{\left({\color{red}{\left(2 x\right)}} \right)} \right)}}{2}$$
Therefore,
$$\int{\cot^{2}{\left(2 x \right)} d x} = - \frac{\cot{\left(2 x \right)}}{2} + \frac{\operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}$$
Simplify:
$$\int{\cot^{2}{\left(2 x \right)} d x} = \frac{- \cot{\left(2 x \right)} + \operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}$$
Add the constant of integration:
$$\int{\cot^{2}{\left(2 x \right)} d x} = \frac{- \cot{\left(2 x \right)} + \operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}+C$$
Answer
$$$\int \cot^{2}{\left(2 x \right)}\, dx = \frac{- \cot{\left(2 x \right)} + \operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2} + C$$$A