Integral of $$$\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}\right)^{2}$$$

The calculator will find the integral/antiderivative of $$$\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}\right)^{2}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- \frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}\right)^{2}\, dx$$$.

Solution

Simplify the integrand:

$${\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}\right)^{2} d x}}} = {\color{red}{\int{\frac{\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}{4} d x}}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(x \right)} = \left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}$$$:

$${\color{red}{\int{\frac{\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}{4} d x}}} = {\color{red}{\left(\frac{\int{\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2} d x}}{4}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2} d x}}}}{4} = \frac{{\color{red}{\int{\left(\sin^{2}{\left(x \right)} - 2 \sin{\left(x \right)} \cos{\left(x \right)} + \cos^{2}{\left(x \right)}\right)d x}}}}{4}$$

Integrate term by term:

$$\frac{{\color{red}{\int{\left(\sin^{2}{\left(x \right)} - 2 \sin{\left(x \right)} \cos{\left(x \right)} + \cos^{2}{\left(x \right)}\right)d x}}}}{4} = \frac{{\color{red}{\left(- \int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x} + \int{\sin^{2}{\left(x \right)} d x} + \int{\cos^{2}{\left(x \right)} d x}\right)}}}{4}$$

Apply the power reducing formula $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ with $$$\alpha=x$$$:

$$- \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\cos^{2}{\left(x \right)} d x}}}}{4} = - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{4}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$:

$$- \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{4} = - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}}{4}$$

Integrate term by term:

$$- \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{8} = - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{8}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$- \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{\int{\cos{\left(2 x \right)} d x}}{8} + \frac{{\color{red}{\int{1 d x}}}}{8} = - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{\int{\cos{\left(2 x \right)} d x}}{8} + \frac{{\color{red}{x}}}{8}$$

Let $$$u=2 x$$$.

Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.

The integral becomes

$$\frac{x}{8} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{8} = \frac{x}{8} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{8}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{x}{8} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{8} = \frac{x}{8} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{8}$$

The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x}{8} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{16} = \frac{x}{8} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{16}$$

Recall that $$$u=2 x$$$:

$$\frac{x}{8} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{16} = \frac{x}{8} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{\int{\sin^{2}{\left(x \right)} d x}}{4} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{16}$$

Apply the power reducing formula $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ with $$$\alpha=x$$$:

$$\frac{x}{8} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\sin^{2}{\left(x \right)} d x}}}}{4} = \frac{x}{8} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}}}{4}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = 1 - \cos{\left(2 x \right)}$$$:

$$\frac{x}{8} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}}}{4} = \frac{x}{8} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}{2}\right)}}}{4}$$

Integrate term by term:

$$\frac{x}{8} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}}}{8} = \frac{x}{8} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} + \frac{{\color{red}{\left(\int{1 d x} - \int{\cos{\left(2 x \right)} d x}\right)}}}{8}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$\frac{x}{8} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} - \frac{\int{\cos{\left(2 x \right)} d x}}{8} + \frac{{\color{red}{\int{1 d x}}}}{8} = \frac{x}{8} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} - \frac{\int{\cos{\left(2 x \right)} d x}}{8} + \frac{{\color{red}{x}}}{8}$$

The integral $$$\int{\cos{\left(2 x \right)} d x}$$$ was already calculated:

$$\int{\cos{\left(2 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{2}$$

Therefore,

$$\frac{x}{4} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{8} = \frac{x}{4} + \frac{\sin{\left(2 x \right)}}{16} - \frac{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{\sin{\left(2 x \right)}}{2}\right)}}}{8}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}$$$:

$$\frac{x}{4} - \frac{{\color{red}{\int{2 \sin{\left(x \right)} \cos{\left(x \right)} d x}}}}{4} = \frac{x}{4} - \frac{{\color{red}{\left(2 \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}\right)}}}{4}$$

Let $$$v=\sin{\left(x \right)}$$$.

Then $$$dv=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\cos{\left(x \right)} dx = dv$$$.

The integral can be rewritten as

$$\frac{x}{4} - \frac{{\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}}}{2} = \frac{x}{4} - \frac{{\color{red}{\int{v d v}}}}{2}$$

Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$\frac{x}{4} - \frac{{\color{red}{\int{v d v}}}}{2}=\frac{x}{4} - \frac{{\color{red}{\frac{v^{1 + 1}}{1 + 1}}}}{2}=\frac{x}{4} - \frac{{\color{red}{\left(\frac{v^{2}}{2}\right)}}}{2}$$

Recall that $$$v=\sin{\left(x \right)}$$$:

$$\frac{x}{4} - \frac{{\color{red}{v}}^{2}}{4} = \frac{x}{4} - \frac{{\color{red}{\sin{\left(x \right)}}}^{2}}{4}$$

Therefore,

$$\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}\right)^{2} d x} = \frac{x}{4} - \frac{\sin^{2}{\left(x \right)}}{4}$$

Simplify:

$$\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}\right)^{2} d x} = \frac{x - \sin^{2}{\left(x \right)}}{4}$$

Add the constant of integration:

$$\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}\right)^{2} d x} = \frac{x - \sin^{2}{\left(x \right)}}{4}+C$$

Answer

$$$\int \left(- \frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}\right)^{2}\, dx = \frac{x - \sin^{2}{\left(x \right)}}{4} + C$$$A


Please try a new game Rotatly