Integral of $$$- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + \int{\cos^{3}{\left(x \right)} d x}\right)}}$$
Strip out one cosine and write everything else in terms of the sine, using the formula $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ with $$$\alpha=x$$$:
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cos^{3}{\left(x \right)} d x}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}}$$
Let $$$u=\sin{\left(x \right)}$$$.
Then $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\cos{\left(x \right)} dx = du$$$.
The integral becomes
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - u^{2}\right)d u}}}$$
Integrate term by term:
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - \int{u^{2} d u} + {\color{red}{\int{1 d u}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - \int{u^{2} d u} + {\color{red}{u}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\int{u^{2} d u}}}=u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recall that $$$u=\sin{\left(x \right)}$$$:
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\sin{\left(x \right)}}} - \frac{{\color{red}{\sin{\left(x \right)}}}^{3}}{3}$$
Apply the power reducing formula $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ with $$$\alpha=x$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x}}} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{\frac{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{2} d x}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = 3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{\frac{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{2} d x}}} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\left(\frac{\int{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)} d x}}{2}\right)}}$$
Expand the expression:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{\left(- 3 \cos{\left(x \right)} \cos{\left(2 x \right)} + 3 \cos{\left(x \right)}\right)d x}}}}{2}$$
Integrate term by term:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{\left(- 3 \cos{\left(x \right)} \cos{\left(2 x \right)} + 3 \cos{\left(x \right)}\right)d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\left(- \int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x} + \int{3 \cos{\left(x \right)} d x}\right)}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{3 \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}}{2}$$
The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\sin{\left(x \right)}}}}{2}$$
Rewrite $$$\cos\left(x \right)\cos\left(2 x \right)$$$ using the formula $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ with $$$\alpha=x$$$ and $$$\beta=2 x$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(\frac{3 \cos{\left(x \right)}}{2} + \frac{3 \cos{\left(3 x \right)}}{2}\right)d x}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = 3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(\frac{3 \cos{\left(x \right)}}{2} + \frac{3 \cos{\left(3 x \right)}}{2}\right)d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}\right)d x}}{2}\right)}}}{2}$$
Integrate term by term:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}\right)d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\left(\int{3 \cos{\left(x \right)} d x} + \int{3 \cos{\left(3 x \right)} d x}\right)}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\int{3 \cos{\left(x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}}{4}$$
The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\sin{\left(x \right)}}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\int{3 \cos{\left(3 x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\left(3 \int{\cos{\left(3 x \right)} d x}\right)}}}{4}$$
Let $$$u=3 x$$$.
Then $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{3}$$$.
The integral can be rewritten as
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{4}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Recall that $$$u=3 x$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{4}$$
Therefore,
$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{4}$$
Simplify:
$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = \frac{\sin{\left(3 x \right)}}{3}$$
Add the constant of integration:
$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = \frac{\sin{\left(3 x \right)}}{3}+C$$
Answer
$$$\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)\, dx = \frac{\sin{\left(3 x \right)}}{3} + C$$$A