Integral of $$$c^{15}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int c^{15}\, dc$$$.
Solution
Apply the power rule $$$\int c^{n}\, dc = \frac{c^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=15$$$:
$${\color{red}{\int{c^{15} d c}}}={\color{red}{\frac{c^{1 + 15}}{1 + 15}}}={\color{red}{\left(\frac{c^{16}}{16}\right)}}$$
Therefore,
$$\int{c^{15} d c} = \frac{c^{16}}{16}$$
Add the constant of integration:
$$\int{c^{15} d c} = \frac{c^{16}}{16}+C$$
Answer
$$$\int c^{15}\, dc = \frac{c^{16}}{16} + C$$$A
Please try a new game Rotatly