Integral of $$$\frac{6 \ln^{2}\left(x\right)}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{6 \ln^{2}\left(x\right)}{x}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=6$$$ and $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}^{2}}{x}$$$:
$${\color{red}{\int{\frac{6 \ln{\left(x \right)}^{2}}{x} d x}}} = {\color{red}{\left(6 \int{\frac{\ln{\left(x \right)}^{2}}{x} d x}\right)}}$$
Let $$$u=\ln{\left(x \right)}$$$.
Then $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (steps can be seen »), and we have that $$$\frac{dx}{x} = du$$$.
The integral can be rewritten as
$$6 {\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d x}}} = 6 {\color{red}{\int{u^{2} d u}}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$6 {\color{red}{\int{u^{2} d u}}}=6 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=6 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recall that $$$u=\ln{\left(x \right)}$$$:
$$2 {\color{red}{u}}^{3} = 2 {\color{red}{\ln{\left(x \right)}}}^{3}$$
Therefore,
$$\int{\frac{6 \ln{\left(x \right)}^{2}}{x} d x} = 2 \ln{\left(x \right)}^{3}$$
Add the constant of integration:
$$\int{\frac{6 \ln{\left(x \right)}^{2}}{x} d x} = 2 \ln{\left(x \right)}^{3}+C$$
Answer
$$$\int \frac{6 \ln^{2}\left(x\right)}{x}\, dx = 2 \ln^{3}\left(x\right) + C$$$A