Integral of $$$5 x^{2} - 14 x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(5 x^{2} - 14 x\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(5 x^{2} - 14 x\right)d x}}} = {\color{red}{\left(- \int{14 x d x} + \int{5 x^{2} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=14$$$ and $$$f{\left(x \right)} = x$$$:
$$\int{5 x^{2} d x} - {\color{red}{\int{14 x d x}}} = \int{5 x^{2} d x} - {\color{red}{\left(14 \int{x d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\int{5 x^{2} d x} - 14 {\color{red}{\int{x d x}}}=\int{5 x^{2} d x} - 14 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{5 x^{2} d x} - 14 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5$$$ and $$$f{\left(x \right)} = x^{2}$$$:
$$- 7 x^{2} + {\color{red}{\int{5 x^{2} d x}}} = - 7 x^{2} + {\color{red}{\left(5 \int{x^{2} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- 7 x^{2} + 5 {\color{red}{\int{x^{2} d x}}}=- 7 x^{2} + 5 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 7 x^{2} + 5 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Therefore,
$$\int{\left(5 x^{2} - 14 x\right)d x} = \frac{5 x^{3}}{3} - 7 x^{2}$$
Simplify:
$$\int{\left(5 x^{2} - 14 x\right)d x} = \frac{x^{2} \left(5 x - 21\right)}{3}$$
Add the constant of integration:
$$\int{\left(5 x^{2} - 14 x\right)d x} = \frac{x^{2} \left(5 x - 21\right)}{3}+C$$
Answer
$$$\int \left(5 x^{2} - 14 x\right)\, dx = \frac{x^{2} \left(5 x - 21\right)}{3} + C$$$A