Integral of $$$\frac{5}{\sqrt{9 - 4 x^{2}}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{5}{\sqrt{9 - 4 x^{2}}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5$$$ and $$$f{\left(x \right)} = \frac{1}{\sqrt{9 - 4 x^{2}}}$$$:
$${\color{red}{\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x}}} = {\color{red}{\left(5 \int{\frac{1}{\sqrt{9 - 4 x^{2}}} d x}\right)}}$$
Let $$$x=\frac{3 \sin{\left(u \right)}}{2}$$$.
Then $$$dx=\left(\frac{3 \sin{\left(u \right)}}{2}\right)^{\prime }du = \frac{3 \cos{\left(u \right)}}{2} du$$$ (steps can be seen »).
Also, it follows that $$$u=\operatorname{asin}{\left(\frac{2 x}{3} \right)}$$$.
Integrand becomes
$$$\frac{1}{\sqrt{9 - 4 x^{2}}} = \frac{1}{\sqrt{9 - 9 \sin^{2}{\left( u \right)}}}$$$
Use the identity $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{9 - 9 \sin^{2}{\left( u \right)}}}=\frac{1}{3 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{3 \sqrt{\cos^{2}{\left( u \right)}}}$$$
Assuming that $$$\cos{\left( u \right)} \ge 0$$$, we obtain the following:
$$$\frac{1}{3 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{3 \cos{\left( u \right)}}$$$
So,
$$5 {\color{red}{\int{\frac{1}{\sqrt{9 - 4 x^{2}}} d x}}} = 5 {\color{red}{\int{\frac{1}{2} d u}}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=\frac{1}{2}$$$:
$$5 {\color{red}{\int{\frac{1}{2} d u}}} = 5 {\color{red}{\left(\frac{u}{2}\right)}}$$
Recall that $$$u=\operatorname{asin}{\left(\frac{2 x}{3} \right)}$$$:
$$\frac{5 {\color{red}{u}}}{2} = \frac{5 {\color{red}{\operatorname{asin}{\left(\frac{2 x}{3} \right)}}}}{2}$$
Therefore,
$$\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x} = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2}$$
Add the constant of integration:
$$\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x} = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2}+C$$
Answer
$$$\int \frac{5}{\sqrt{9 - 4 x^{2}}}\, dx = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2} + C$$$A