Integral of $$$717897987691852588770249 x^{50}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 717897987691852588770249 x^{50}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=717897987691852588770249$$$ and $$$f{\left(x \right)} = x^{50}$$$:
$${\color{red}{\int{717897987691852588770249 x^{50} d x}}} = {\color{red}{\left(717897987691852588770249 \int{x^{50} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=50$$$:
$$717897987691852588770249 {\color{red}{\int{x^{50} d x}}}=717897987691852588770249 {\color{red}{\frac{x^{1 + 50}}{1 + 50}}}=717897987691852588770249 {\color{red}{\left(\frac{x^{51}}{51}\right)}}$$
Therefore,
$$\int{717897987691852588770249 x^{50} d x} = \frac{239299329230617529590083 x^{51}}{17}$$
Add the constant of integration:
$$\int{717897987691852588770249 x^{50} d x} = \frac{239299329230617529590083 x^{51}}{17}+C$$
Answer
$$$\int 717897987691852588770249 x^{50}\, dx = \frac{239299329230617529590083 x^{51}}{17} + C$$$A