Integral of $$$\frac{3 x^{2} - 209 x}{x^{2}}$$$

The calculator will find the integral/antiderivative of $$$\frac{3 x^{2} - 209 x}{x^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{3 x^{2} - 209 x}{x^{2}}\, dx$$$.

Solution

Expand the expression:

$${\color{red}{\int{\frac{3 x^{2} - 209 x}{x^{2}} d x}}} = {\color{red}{\int{\left(3 - \frac{209}{x}\right)d x}}}$$

Integrate term by term:

$${\color{red}{\int{\left(3 - \frac{209}{x}\right)d x}}} = {\color{red}{\left(\int{3 d x} - \int{\frac{209}{x} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=3$$$:

$$- \int{\frac{209}{x} d x} + {\color{red}{\int{3 d x}}} = - \int{\frac{209}{x} d x} + {\color{red}{\left(3 x\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=209$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$3 x - {\color{red}{\int{\frac{209}{x} d x}}} = 3 x - {\color{red}{\left(209 \int{\frac{1}{x} d x}\right)}}$$

The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$3 x - 209 {\color{red}{\int{\frac{1}{x} d x}}} = 3 x - 209 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Therefore,

$$\int{\frac{3 x^{2} - 209 x}{x^{2}} d x} = 3 x - 209 \ln{\left(\left|{x}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{3 x^{2} - 209 x}{x^{2}} d x} = 3 x - 209 \ln{\left(\left|{x}\right| \right)}+C$$

Answer

$$$\int \frac{3 x^{2} - 209 x}{x^{2}}\, dx = \left(3 x - 209 \ln\left(\left|{x}\right|\right)\right) + C$$$A


Please try a new game Rotatly