Integral of $$$\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}$$$

The calculator will find the integral/antiderivative of $$$\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}\, dx$$$.

Solution

Let $$$u=x^{3}$$$.

Then $$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (steps can be seen »), and we have that $$$x^{2} dx = \frac{du}{3}$$$.

Therefore,

$${\color{red}{\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x}}} = {\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}}$$

Let $$$v=\frac{1}{u}$$$.

Then $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (steps can be seen »), and we have that $$$\frac{du}{u^{2}} = - dv$$$.

The integral can be rewritten as

$${\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}} = {\color{red}{\int{\left(- e^{v}\right)d v}}}$$

Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=-1$$$ and $$$f{\left(v \right)} = e^{v}$$$:

$${\color{red}{\int{\left(- e^{v}\right)d v}}} = {\color{red}{\left(- \int{e^{v} d v}\right)}}$$

The integral of the exponential function is $$$\int{e^{v} d v} = e^{v}$$$:

$$- {\color{red}{\int{e^{v} d v}}} = - {\color{red}{e^{v}}}$$

Recall that $$$v=\frac{1}{u}$$$:

$$- e^{{\color{red}{v}}} = - e^{{\color{red}{\frac{1}{u}}}}$$

Recall that $$$u=x^{3}$$$:

$$- e^{{\color{red}{u}}^{-1}} = - e^{{\color{red}{x^{3}}}^{-1}}$$

Therefore,

$$\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - e^{\frac{1}{x^{3}}}$$

Add the constant of integration:

$$\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - e^{\frac{1}{x^{3}}}+C$$

Answer

$$$\int \frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}\, dx = - e^{\frac{1}{x^{3}}} + C$$$A


Please try a new game Rotatly