Integral of $$$\left(\frac{3}{4}\right)^{x^{2}}$$$

The calculator will find the integral/antiderivative of $$$\left(\frac{3}{4}\right)^{x^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(\frac{3}{4}\right)^{x^{2}}\, dx$$$.

Solution

Change the base:

$${\color{red}{\int{\left(\frac{3}{4}\right)^{x^{2}} d x}}} = {\color{red}{\int{e^{x^{2} \ln{\left(\frac{3}{4} \right)}} d x}}}$$

Let $$$u=x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}$$$.

Then $$$du=\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}\right)^{\prime }dx = \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$$.

So,

$${\color{red}{\int{e^{x^{2} \ln{\left(\frac{3}{4} \right)}} d x}}} = {\color{red}{\int{\frac{e^{- u^{2}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$$ and $$$f{\left(u \right)} = e^{- u^{2}}$$$:

$${\color{red}{\int{\frac{e^{- u^{2}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} d u}}} = {\color{red}{\frac{\int{e^{- u^{2}} d u}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}}}$$

This integral (Error Function) does not have a closed form:

$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$

Recall that $$$u=x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}$$$:

$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$

Therefore,

$$\int{\left(\frac{3}{4}\right)^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$

Add the constant of integration:

$$\int{\left(\frac{3}{4}\right)^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}+C$$

Answer

$$$\int \left(\frac{3}{4}\right)^{x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)} \right)}}{2 \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}} + C$$$A


Please try a new game Rotatly