Integral of $$$\left(2 x - 6\right)^{3}$$$

The calculator will find the integral/antiderivative of $$$\left(2 x - 6\right)^{3}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(2 x - 6\right)^{3}\, dx$$$.

Solution

Let $$$u=2 x - 6$$$.

Then $$$du=\left(2 x - 6\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.

So,

$${\color{red}{\int{\left(2 x - 6\right)^{3} d x}}} = {\color{red}{\int{\frac{u^{3}}{2} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = u^{3}$$$:

$${\color{red}{\int{\frac{u^{3}}{2} d u}}} = {\color{red}{\left(\frac{\int{u^{3} d u}}{2}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:

$$\frac{{\color{red}{\int{u^{3} d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 3}}{1 + 3}}}}{2}=\frac{{\color{red}{\left(\frac{u^{4}}{4}\right)}}}{2}$$

Recall that $$$u=2 x - 6$$$:

$$\frac{{\color{red}{u}}^{4}}{8} = \frac{{\color{red}{\left(2 x - 6\right)}}^{4}}{8}$$

Therefore,

$$\int{\left(2 x - 6\right)^{3} d x} = \frac{\left(2 x - 6\right)^{4}}{8}$$

Simplify:

$$\int{\left(2 x - 6\right)^{3} d x} = 2 \left(x - 3\right)^{4}$$

Add the constant of integration:

$$\int{\left(2 x - 6\right)^{3} d x} = 2 \left(x - 3\right)^{4}+C$$

Answer

$$$\int \left(2 x - 6\right)^{3}\, dx = 2 \left(x - 3\right)^{4} + C$$$A


Please try a new game Rotatly