Integral of $$$\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx$$$.

Solution

Expand the expression:

$${\color{red}{\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{2}{\cos^{2}{\left(x \right)}}\right)d x}}}$$

Integrate term by term:

$${\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{2}{\cos^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + \int{\frac{2}{\cos^{2}{\left(x \right)}} d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}$$$:

$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + {\color{red}{\int{\frac{2}{\cos^{2}{\left(x \right)}} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + {\color{red}{\left(2 \int{\frac{1}{\cos^{2}{\left(x \right)}} d x}\right)}}$$

Rewrite the integrand in terms of the secant:

$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}$$

The integral of $$$\sec^{2}{\left(x \right)}$$$ is $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\tan{\left(x \right)}}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$:

$$2 \tan{\left(x \right)} - {\color{red}{\int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = 2 \tan{\left(x \right)} - {\color{red}{\left(3 \int{\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}\right)}}$$

Let $$$u=\cos{\left(x \right)}$$$.

Then $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\sin{\left(x \right)} dx = - du$$$.

Therefore,

$$2 \tan{\left(x \right)} - 3 {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = 2 \tan{\left(x \right)} - 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:

$$2 \tan{\left(x \right)} - 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = 2 \tan{\left(x \right)} - 3 {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$$2 \tan{\left(x \right)} + 3 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\int{u^{-2} d u}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\left(- u^{-1}\right)}}=2 \tan{\left(x \right)} + 3 {\color{red}{\left(- \frac{1}{u}\right)}}$$

Recall that $$$u=\cos{\left(x \right)}$$$:

$$2 \tan{\left(x \right)} - 3 {\color{red}{u}}^{-1} = 2 \tan{\left(x \right)} - 3 {\color{red}{\cos{\left(x \right)}}}^{-1}$$

Therefore,

$$\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} = 2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}$$

Add the constant of integration:

$$\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} = 2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}+C$$

Answer

$$$\int \frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx = \left(2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}\right) + C$$$A


Please try a new game Rotatly