Integral of $$$\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}$$$

The calculator will find the integral/antiderivative of $$$\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}\, dx$$$.

Solution

Apply the power reducing formula $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ with $$$\alpha=x$$$:

$${\color{red}{\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)}{2} d x}}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)$$$:

$${\color{red}{\int{\frac{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} \cos{\left(2 x \right)} - 3 \sin{\left(x \right)} + 2 \cos{\left(2 x \right)} + 2\right)d x}}}}{2}$$

Integrate term by term:

$$\frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} \cos{\left(2 x \right)} - 3 \sin{\left(x \right)} + 2 \cos{\left(2 x \right)} + 2\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{2 d x} - \int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x} - \int{3 \sin{\left(x \right)} d x} + \int{2 \cos{\left(2 x \right)} d x}\right)}}}{2}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=2$$$:

$$- \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\int{3 \sin{\left(x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{2 d x}}}}{2} = - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\int{3 \sin{\left(x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(2 x\right)}}}{2}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{3 \sin{\left(x \right)} d x}}}}{2} = x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(3 \int{\sin{\left(x \right)} d x}\right)}}}{2}$$

The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{2} = x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{2}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:

$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{2 \cos{\left(2 x \right)} d x}}}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(2 \int{\cos{\left(2 x \right)} d x}\right)}}}{2}$$

Let $$$u=2 x$$$.

Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.

So,

$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$

Recall that $$$u=2 x$$$:

$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

Rewrite $$$\sin\left(x \right)\cos\left(2 x \right)$$$ using the formula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ with $$$\alpha=x$$$ and $$$\beta=2 x$$$:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{2} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{2} + \frac{3 \sin{\left(3 x \right)}}{2}\right)d x}}}}{2}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = - 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}$$$:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{2} + \frac{3 \sin{\left(3 x \right)}}{2}\right)d x}}}}{2} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(- 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}\right)d x}}{2}\right)}}}{2}$$

Integrate term by term:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}\right)d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\left(- \int{3 \sin{\left(x \right)} d x} + \int{3 \sin{\left(3 x \right)} d x}\right)}}}{4}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\int{3 \sin{\left(x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\left(3 \int{\sin{\left(x \right)} d x}\right)}}}{4}$$

The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\int{3 \sin{\left(3 x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\left(3 \int{\sin{\left(3 x \right)} d x}\right)}}}{4}$$

Let $$$u=3 x$$$.

Then $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{3}$$$.

The integral can be rewritten as

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{4}$$

The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$

Recall that $$$u=3 x$$$:

$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left({\color{red}{u}} \right)}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{4}$$

Therefore,

$$\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}$$

Add the constant of integration:

$$\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}+C$$

Answer

$$$\int \left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}\, dx = \left(x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}\right) + C$$$A


Please try a new game Rotatly