Integral of $$$2 \tan^{2}{\left(\theta \right)}$$$

The calculator will find the integral/antiderivative of $$$2 \tan^{2}{\left(\theta \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int 2 \tan^{2}{\left(\theta \right)}\, d\theta$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ with $$$c=2$$$ and $$$f{\left(\theta \right)} = \tan^{2}{\left(\theta \right)}$$$:

$${\color{red}{\int{2 \tan^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\left(2 \int{\tan^{2}{\left(\theta \right)} d \theta}\right)}}$$

Let $$$u=\tan{\left(\theta \right)}$$$.

Then $$$\theta=\operatorname{atan}{\left(u \right)}$$$ and $$$d\theta=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (steps can be seen »).

The integral becomes

$$2 {\color{red}{\int{\tan^{2}{\left(\theta \right)} d \theta}}} = 2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$

Rewrite and split the fraction:

$$2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integrate term by term:

$$2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:

$$- 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{u}}$$

The integral of $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$2 u - 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 u - 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Recall that $$$u=\tan{\left(\theta \right)}$$$:

$$- 2 \operatorname{atan}{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} = - 2 \operatorname{atan}{\left({\color{red}{\tan{\left(\theta \right)}}} \right)} + 2 {\color{red}{\tan{\left(\theta \right)}}}$$

Therefore,

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \tan{\left(\theta \right)} - 2 \operatorname{atan}{\left(\tan{\left(\theta \right)} \right)}$$

Simplify:

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \left(- \theta + \tan{\left(\theta \right)}\right)$$

Add the constant of integration:

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \left(- \theta + \tan{\left(\theta \right)}\right)+C$$

Answer

$$$\int 2 \tan^{2}{\left(\theta \right)}\, d\theta = 2 \left(- \theta + \tan{\left(\theta \right)}\right) + C$$$A


Please try a new game Rotatly