Integral of $$$2 \tan^{2}{\left(\theta \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2 \tan^{2}{\left(\theta \right)}\, d\theta$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ with $$$c=2$$$ and $$$f{\left(\theta \right)} = \tan^{2}{\left(\theta \right)}$$$:
$${\color{red}{\int{2 \tan^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\left(2 \int{\tan^{2}{\left(\theta \right)} d \theta}\right)}}$$
Let $$$u=\tan{\left(\theta \right)}$$$.
Then $$$\theta=\operatorname{atan}{\left(u \right)}$$$ and $$$d\theta=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (steps can be seen »).
The integral becomes
$$2 {\color{red}{\int{\tan^{2}{\left(\theta \right)} d \theta}}} = 2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$
Rewrite and split the fraction:
$$2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Integrate term by term:
$$2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$- 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{u}}$$
The integral of $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$2 u - 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 u - 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Recall that $$$u=\tan{\left(\theta \right)}$$$:
$$- 2 \operatorname{atan}{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} = - 2 \operatorname{atan}{\left({\color{red}{\tan{\left(\theta \right)}}} \right)} + 2 {\color{red}{\tan{\left(\theta \right)}}}$$
Therefore,
$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \tan{\left(\theta \right)} - 2 \operatorname{atan}{\left(\tan{\left(\theta \right)} \right)}$$
Simplify:
$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \left(- \theta + \tan{\left(\theta \right)}\right)$$
Add the constant of integration:
$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \left(- \theta + \tan{\left(\theta \right)}\right)+C$$
Answer
$$$\int 2 \tan^{2}{\left(\theta \right)}\, d\theta = 2 \left(- \theta + \tan{\left(\theta \right)}\right) + C$$$A