Integral of $$$\frac{1458}{\sqrt{x^{3}}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1458}{\sqrt{x^{3}}}\, dx$$$.
Solution
The input is rewritten: $$$\int{\frac{1458}{\sqrt{x^{3}}} d x}=\int{\frac{1458}{x^{\frac{3}{2}}} d x}$$$.
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=1458$$$ and $$$f{\left(x \right)} = \frac{1}{x^{\frac{3}{2}}}$$$:
$${\color{red}{\int{\frac{1458}{x^{\frac{3}{2}}} d x}}} = {\color{red}{\left(1458 \int{\frac{1}{x^{\frac{3}{2}}} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{3}{2}$$$:
$$1458 {\color{red}{\int{\frac{1}{x^{\frac{3}{2}}} d x}}}=1458 {\color{red}{\int{x^{- \frac{3}{2}} d x}}}=1458 {\color{red}{\frac{x^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}=1458 {\color{red}{\left(- 2 x^{- \frac{1}{2}}\right)}}=1458 {\color{red}{\left(- \frac{2}{\sqrt{x}}\right)}}$$
Therefore,
$$\int{\frac{1458}{x^{\frac{3}{2}}} d x} = - \frac{2916}{\sqrt{x}}$$
Add the constant of integration:
$$\int{\frac{1458}{x^{\frac{3}{2}}} d x} = - \frac{2916}{\sqrt{x}}+C$$
Answer
$$$\int \frac{1458}{\sqrt{x^{3}}}\, dx = - \frac{2916}{\sqrt{x}} + C$$$A