Integral of $$$1 - x^{3}$$$

The calculator will find the integral/antiderivative of $$$1 - x^{3}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(1 - x^{3}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(1 - x^{3}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{x^{3} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$- \int{x^{3} d x} + {\color{red}{\int{1 d x}}} = - \int{x^{3} d x} + {\color{red}{x}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:

$$x - {\color{red}{\int{x^{3} d x}}}=x - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=x - {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Therefore,

$$\int{\left(1 - x^{3}\right)d x} = - \frac{x^{4}}{4} + x$$

Add the constant of integration:

$$\int{\left(1 - x^{3}\right)d x} = - \frac{x^{4}}{4} + x+C$$

Answer

$$$\int \left(1 - x^{3}\right)\, dx = \left(- \frac{x^{4}}{4} + x\right) + C$$$A


Please try a new game Rotatly