Integral of $$$\frac{\sin{\left(5 x \right)}}{5}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sin{\left(5 x \right)}}{5}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{5}$$$ and $$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(5 x \right)}}{5} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(5 x \right)} d x}}{5}\right)}}$$
Let $$$u=5 x$$$.
Then $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{5}$$$.
Thus,
$$\frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{5} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{5}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{5}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{5} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{5}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{25} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{25}$$
Recall that $$$u=5 x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{25} = - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{25}$$
Therefore,
$$\int{\frac{\sin{\left(5 x \right)}}{5} d x} = - \frac{\cos{\left(5 x \right)}}{25}$$
Add the constant of integration:
$$\int{\frac{\sin{\left(5 x \right)}}{5} d x} = - \frac{\cos{\left(5 x \right)}}{25}+C$$
Answer
$$$\int \frac{\sin{\left(5 x \right)}}{5}\, dx = - \frac{\cos{\left(5 x \right)}}{25} + C$$$A