Integral of $$$\frac{1}{p \left(1 - \frac{p}{n}\right)}$$$ with respect to $$$n$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{p \left(1 - \frac{p}{n}\right)}\, dn$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ with $$$c=\frac{1}{p}$$$ and $$$f{\left(n \right)} = \frac{1}{1 - \frac{p}{n}}$$$:
$${\color{red}{\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n}}} = {\color{red}{\frac{\int{\frac{1}{1 - \frac{p}{n}} d n}}{p}}}$$
Simplify:
$$\frac{{\color{red}{\int{\frac{1}{1 - \frac{p}{n}} d n}}}}{p} = \frac{{\color{red}{\int{\frac{n}{n - p} d n}}}}{p}$$
Rewrite and split the fraction:
$$\frac{{\color{red}{\int{\frac{n}{n - p} d n}}}}{p} = \frac{{\color{red}{\int{\left(\frac{p}{n - p} + 1\right)d n}}}}{p}$$
Integrate term by term:
$$\frac{{\color{red}{\int{\left(\frac{p}{n - p} + 1\right)d n}}}}{p} = \frac{{\color{red}{\left(\int{1 d n} + \int{\frac{p}{n - p} d n}\right)}}}{p}$$
Apply the constant rule $$$\int c\, dn = c n$$$ with $$$c=1$$$:
$$\frac{\int{\frac{p}{n - p} d n} + {\color{red}{\int{1 d n}}}}{p} = \frac{\int{\frac{p}{n - p} d n} + {\color{red}{n}}}{p}$$
Apply the constant multiple rule $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ with $$$c=p$$$ and $$$f{\left(n \right)} = \frac{1}{n - p}$$$:
$$\frac{n + {\color{red}{\int{\frac{p}{n - p} d n}}}}{p} = \frac{n + {\color{red}{p \int{\frac{1}{n - p} d n}}}}{p}$$
Let $$$u=n - p$$$.
Then $$$du=\left(n - p\right)^{\prime }dn = 1 dn$$$ (steps can be seen »), and we have that $$$dn = du$$$.
The integral becomes
$$\frac{n + p {\color{red}{\int{\frac{1}{n - p} d n}}}}{p} = \frac{n + p {\color{red}{\int{\frac{1}{u} d u}}}}{p}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{n + p {\color{red}{\int{\frac{1}{u} d u}}}}{p} = \frac{n + p {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{p}$$
Recall that $$$u=n - p$$$:
$$\frac{n + p \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{p} = \frac{n + p \ln{\left(\left|{{\color{red}{\left(n - p\right)}}}\right| \right)}}{p}$$
Therefore,
$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n + p \ln{\left(\left|{n - p}\right| \right)}}{p}$$
Simplify:
$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n}{p} + \ln{\left(\left|{n - p}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n}{p} + \ln{\left(\left|{n - p}\right| \right)}+C$$
Answer
$$$\int \frac{1}{p \left(1 - \frac{p}{n}\right)}\, dn = \left(\frac{n}{p} + \ln\left(\left|{n - p}\right|\right)\right) + C$$$A