Integral of $$$\frac{\sqrt{2}}{4 x \left(x - 3\right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sqrt{2}}{4 x \left(x - 3\right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{2}}{4}$$$ and $$$f{\left(x \right)} = \frac{1}{x \left(x - 3\right)}$$$:
$${\color{red}{\int{\frac{\sqrt{2}}{4 x \left(x - 3\right)} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x \left(x - 3\right)} d x}}{4}\right)}}$$
Perform partial fraction decomposition (steps can be seen »):
$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{x \left(x - 3\right)} d x}}}}{4} = \frac{\sqrt{2} {\color{red}{\int{\left(\frac{1}{3 \left(x - 3\right)} - \frac{1}{3 x}\right)d x}}}}{4}$$
Integrate term by term:
$$\frac{\sqrt{2} {\color{red}{\int{\left(\frac{1}{3 \left(x - 3\right)} - \frac{1}{3 x}\right)d x}}}}{4} = \frac{\sqrt{2} {\color{red}{\left(- \int{\frac{1}{3 x} d x} + \int{\frac{1}{3 \left(x - 3\right)} d x}\right)}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$\frac{\sqrt{2} \left(\int{\frac{1}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{3 x} d x}}}\right)}{4} = \frac{\sqrt{2} \left(\int{\frac{1}{3 \left(x - 3\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{3}\right)}}\right)}{4}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\frac{\sqrt{2} \left(\int{\frac{1}{3 \left(x - 3\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{3}\right)}{4} = \frac{\sqrt{2} \left(\int{\frac{1}{3 \left(x - 3\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{3}\right)}{4}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(x \right)} = \frac{1}{x - 3}$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + {\color{red}{\int{\frac{1}{3 \left(x - 3\right)} d x}}}\right)}{4} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + {\color{red}{\left(\frac{\int{\frac{1}{x - 3} d x}}{3}\right)}}\right)}{4}$$
Let $$$u=x - 3$$$.
Then $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
Thus,
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{{\color{red}{\int{\frac{1}{x - 3} d x}}}}{3}\right)}{4} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3}\right)}{4}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3}\right)}{4} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}\right)}{4}$$
Recall that $$$u=x - 3$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3}\right)}{4} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)}}{3}\right)}{4}$$
Therefore,
$$\int{\frac{\sqrt{2}}{4 x \left(x - 3\right)} d x} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{\ln{\left(\left|{x - 3}\right| \right)}}{3}\right)}{4}$$
Simplify:
$$\int{\frac{\sqrt{2}}{4 x \left(x - 3\right)} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 3}\right| \right)}\right)}{12}$$
Add the constant of integration:
$$\int{\frac{\sqrt{2}}{4 x \left(x - 3\right)} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 3}\right| \right)}\right)}{12}+C$$
Answer
$$$\int \frac{\sqrt{2}}{4 x \left(x - 3\right)}\, dx = \frac{\sqrt{2} \left(- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 3}\right|\right)\right)}{12} + C$$$A