Integral of $$$\frac{e^{2 x}}{e^{x} + 1}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx$$$.
Solution
Let $$$u=e^{x}$$$.
Then $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (steps can be seen »), and we have that $$$e^{x} dx = du$$$.
Thus,
$${\color{red}{\int{\frac{e^{2 x}}{e^{x} + 1} d x}}} = {\color{red}{\int{\frac{u}{u + 1} d u}}}$$
Rewrite and split the fraction:
$${\color{red}{\int{\frac{u}{u + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}}$$
Integrate term by term:
$${\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u + 1} d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$- \int{\frac{1}{u + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u + 1} d u} + {\color{red}{u}}$$
Let $$$v=u + 1$$$.
Then $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (steps can be seen »), and we have that $$$du = dv$$$.
So,
$$u - {\color{red}{\int{\frac{1}{u + 1} d u}}} = u - {\color{red}{\int{\frac{1}{v} d v}}}$$
The integral of $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$u - {\color{red}{\int{\frac{1}{v} d v}}} = u - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Recall that $$$v=u + 1$$$:
$$u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}$$
Recall that $$$u=e^{x}$$$:
$$- \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - \ln{\left(\left|{1 + {\color{red}{e^{x}}}}\right| \right)} + {\color{red}{e^{x}}}$$
Therefore,
$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}$$
Add the constant of integration:
$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}+C$$
Answer
$$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx = \left(e^{x} - \ln\left(e^{x} + 1\right)\right) + C$$$A