Integral of $$$\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{d}{f}$$$ and $$$f{\left(x \right)} = 7 x^{3} - 13 x^{2} - 6$$$:

$${\color{red}{\int{\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f} d x}}} = {\color{red}{\frac{d \int{\left(7 x^{3} - 13 x^{2} - 6\right)d x}}{f}}}$$

Integrate term by term:

$$\frac{d {\color{red}{\int{\left(7 x^{3} - 13 x^{2} - 6\right)d x}}}}{f} = \frac{d {\color{red}{\left(- \int{6 d x} - \int{13 x^{2} d x} + \int{7 x^{3} d x}\right)}}}{f}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=6$$$:

$$\frac{d \left(- \int{13 x^{2} d x} + \int{7 x^{3} d x} - {\color{red}{\int{6 d x}}}\right)}{f} = \frac{d \left(- \int{13 x^{2} d x} + \int{7 x^{3} d x} - {\color{red}{\left(6 x\right)}}\right)}{f}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=13$$$ and $$$f{\left(x \right)} = x^{2}$$$:

$$\frac{d \left(- 6 x + \int{7 x^{3} d x} - {\color{red}{\int{13 x^{2} d x}}}\right)}{f} = \frac{d \left(- 6 x + \int{7 x^{3} d x} - {\color{red}{\left(13 \int{x^{2} d x}\right)}}\right)}{f}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$\frac{d \left(- 6 x + \int{7 x^{3} d x} - 13 {\color{red}{\int{x^{2} d x}}}\right)}{f}=\frac{d \left(- 6 x + \int{7 x^{3} d x} - 13 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}\right)}{f}=\frac{d \left(- 6 x + \int{7 x^{3} d x} - 13 {\color{red}{\left(\frac{x^{3}}{3}\right)}}\right)}{f}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=7$$$ and $$$f{\left(x \right)} = x^{3}$$$:

$$\frac{d \left(- \frac{13 x^{3}}{3} - 6 x + {\color{red}{\int{7 x^{3} d x}}}\right)}{f} = \frac{d \left(- \frac{13 x^{3}}{3} - 6 x + {\color{red}{\left(7 \int{x^{3} d x}\right)}}\right)}{f}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:

$$\frac{d \left(- \frac{13 x^{3}}{3} - 6 x + 7 {\color{red}{\int{x^{3} d x}}}\right)}{f}=\frac{d \left(- \frac{13 x^{3}}{3} - 6 x + 7 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}\right)}{f}=\frac{d \left(- \frac{13 x^{3}}{3} - 6 x + 7 {\color{red}{\left(\frac{x^{4}}{4}\right)}}\right)}{f}$$

Therefore,

$$\int{\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f} d x} = \frac{d \left(\frac{7 x^{4}}{4} - \frac{13 x^{3}}{3} - 6 x\right)}{f}$$

Simplify:

$$\int{\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f} d x} = \frac{d x \left(21 x^{3} - 52 x^{2} - 72\right)}{12 f}$$

Add the constant of integration:

$$\int{\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f} d x} = \frac{d x \left(21 x^{3} - 52 x^{2} - 72\right)}{12 f}+C$$

Answer

$$$\int \frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f}\, dx = \frac{d x \left(21 x^{3} - 52 x^{2} - 72\right)}{12 f} + C$$$A


Please try a new game Rotatly