Integral of $$$\frac{4 x^{2} - 3}{x^{2}}$$$

The calculator will find the integral/antiderivative of $$$\frac{4 x^{2} - 3}{x^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{4 x^{2} - 3}{x^{2}}\, dx$$$.

Solution

Expand the expression:

$${\color{red}{\int{\frac{4 x^{2} - 3}{x^{2}} d x}}} = {\color{red}{\int{\left(4 - \frac{3}{x^{2}}\right)d x}}}$$

Integrate term by term:

$${\color{red}{\int{\left(4 - \frac{3}{x^{2}}\right)d x}}} = {\color{red}{\left(\int{4 d x} - \int{\frac{3}{x^{2}} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=4$$$:

$$- \int{\frac{3}{x^{2}} d x} + {\color{red}{\int{4 d x}}} = - \int{\frac{3}{x^{2}} d x} + {\color{red}{\left(4 x\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:

$$4 x - {\color{red}{\int{\frac{3}{x^{2}} d x}}} = 4 x - {\color{red}{\left(3 \int{\frac{1}{x^{2}} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$$4 x - 3 {\color{red}{\int{\frac{1}{x^{2}} d x}}}=4 x - 3 {\color{red}{\int{x^{-2} d x}}}=4 x - 3 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=4 x - 3 {\color{red}{\left(- x^{-1}\right)}}=4 x - 3 {\color{red}{\left(- \frac{1}{x}\right)}}$$

Therefore,

$$\int{\frac{4 x^{2} - 3}{x^{2}} d x} = 4 x + \frac{3}{x}$$

Add the constant of integration:

$$\int{\frac{4 x^{2} - 3}{x^{2}} d x} = 4 x + \frac{3}{x}+C$$

Answer

$$$\int \frac{4 x^{2} - 3}{x^{2}}\, dx = \left(4 x + \frac{3}{x}\right) + C$$$A


Please try a new game Rotatly