Integral of $$$\frac{x^{2}}{1 - x^{2}}$$$

The calculator will find the integral/antiderivative of $$$\frac{x^{2}}{1 - x^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{x^{2}}{1 - x^{2}}\, dx$$$.

Solution

Since the degree of the numerator is not less than the degree of the denominator, perform polynomial long division (steps can be seen »):

$${\color{red}{\int{\frac{x^{2}}{1 - x^{2}} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{1 - x^{2}}\right)d x}}}$$

Integrate term by term:

$${\color{red}{\int{\left(-1 + \frac{1}{1 - x^{2}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{1 - x^{2}} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$\int{\frac{1}{1 - x^{2}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{1 - x^{2}} d x} - {\color{red}{x}}$$

Perform partial fraction decomposition (steps can be seen »):

$$- x + {\color{red}{\int{\frac{1}{1 - x^{2}} d x}}} = - x + {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$

Integrate term by term:

$$- x + {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}} = - x + {\color{red}{\left(- \int{\frac{1}{2 \left(x - 1\right)} d x} + \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:

$$- x - \int{\frac{1}{2 \left(x - 1\right)} d x} + {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = - x - \int{\frac{1}{2 \left(x - 1\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$

Let $$$u=x + 1$$$.

Then $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

The integral becomes

$$- x - \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = - x - \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- x - \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - x - \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recall that $$$u=x + 1$$$:

$$- x + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x - 1\right)} d x} = - x + \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x - 1\right)} d x}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:

$$- x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = - x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$

Let $$$u=x - 1$$$.

Then $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

The integral can be rewritten as

$$- x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = - x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recall that $$$u=x - 1$$$:

$$- x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2}$$

Therefore,

$$\int{\frac{x^{2}}{1 - x^{2}} d x} = - x - \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}$$

Add the constant of integration:

$$\int{\frac{x^{2}}{1 - x^{2}} d x} = - x - \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}+C$$

Answer

$$$\int \frac{x^{2}}{1 - x^{2}}\, dx = \left(- x - \frac{\ln\left(\left|{x - 1}\right|\right)}{2} + \frac{\ln\left(\left|{x + 1}\right|\right)}{2}\right) + C$$$A


Please try a new game Rotatly